MLICA-Based Separation Algorithm for Complex Sinusoidal Signals with PDF Parameter Optimization
نویسندگان
چکیده
Blind source separation (BSS) techniques are required for various signal decomposing issues. Independent component analysis (ICA), assuming only a statistical independence among stochastic source signals, is one of the most useful BSS tools because it does not need a priori information on each source. However, there are many requirements for decomposing multiple deterministic signals such as complex sinusoidal signals with different frequencies. These requirements may include pulse compression or clutter rejection. It has been theoretically shown that an ICA algorithm based on maximizing non-Gaussianity successfully decomposes such deterministic signals. However, this ICA algorithm does not maintain a sufficient separation performance when the frequency difference of the sinusoidal waves becomes less than a nominal frequency resolution. To solve this problem, this paper proposes a super-resolution algorithm for complex sinusoidal signals by extending the maximum likelihood ICA, where the probability density function (PDF) of a complex sinusoidal signal is exploited as a priori knowledge, in which the PDF of the signal amplitude is approximated as a Gaussian distribution with an extremely small standard deviation. Furthermore, we introduce an optimization process for this standard deviation to avoid divergence in updating the reconstruction matrix. Numerical simulations verify that our proposed algorithm remarkably enhances the separation performance compared to the conventional one, and accomplishes a super-resolution separation even in noisy situations. key words: radar signal processing, maximum likelihood independent component analysis (MLICA), complex sinusoidal signals, PDF parameter optimization
منابع مشابه
Super Resolution TOA Estimation Algorithm with Maximum Likelihood ICA Based Pre-Processing
High-resolution time of arrival (TOA) estimation techniques have great promise for the high range resolution required in recently developed radar systems. A widely known super-resolution TOA estimation algorithm for such applications, the multiple-signal classification (MUSIC) in the frequency domain, has been proposed, which exploits an orthogonal relationship between signal and noise eigenvec...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملICA Algoritm with Likelihood Criterion to Separate Mixtures of Complex Sinusoidal Signals
In this paper we consider the blind source separation (BSS) of complex sinusoidal signals with different frequencies. We introduce a novel ICA (Independent Component Analysis) algorithm for the BSS. ICA requires no prior information of the source signals because it employs only the statistical independence of them. We have already confirmed that ICA was successfully applied to a deterministic s...
متن کاملBlind Voice Separation Based on Empirical Mode Decomposition and Grey Wolf Optimizer Algorithm
Blind voice separation refers to retrieve a set of independent sources combined by an unknown destructive system. The proposed separation procedure is based on processing of the observed sources without having any information about the combinational model or statistics of the source signals. Also, the number of combined sources is usually predefined and it is difficult to estimate based on the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 95-B شماره
صفحات -
تاریخ انتشار 2012